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ABSTRACT
The steerable pyramid decomposition is an invertible
representation similar to the two-dimensional discrete wavelet
transform, but with interesting shift- and rotation-invariance
properties. It is slightly overcomplete and amenable to a filter
bank implementation via convolution and down- and up-
sampling operations. This paper presents a simple method for
designing the FIR filter kernels required to implement the
transform.

1. INTRODUCTION

The steerable pyramid algorithm is an invertible multiscale image
transform [1,2]. Figure 1 shows the iterated filter bank structure
proposed by Simoncelli, et. al. for the steerable pyramid
decomposition and reconstruction [1]. An outgrowth of the
Laplacian pyramid [3], it decomposes an image into oriented,
bandpass filtered components at different (binary) scales. It has
useful shiftability properties in both translation and rotation [4].
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Figure 1. Block diagram of the steerable pyramid
transform for k=2. The decomposition/reconstruction
filter bank is iterated at node 4. The down- and up-
arrows indicate binary down- and up-sampling,
respectively.

Like the discrete wavelet transform (DWT, Mallat algorithm,
[5]), the steerable pyramid transform decomposes an image into a
series of scaled component images from which the original can
be reconstructed. Like the DWT it subsamples the image at each
(binary scaled) stage of iteration, producing progressively half-
sized images. Unlike the DWT it avoids aliasing when
subsampling [1]. Also unlike the DWT, it is shift- and
rotationally-invariant, due to the absence of aliasing in the down-
sampling process.
One must choose the order of the derivative upon which the
steerable pyramid transform is based. The number, k, of

orientation bands at each scale is one more than the order of the
derivative. The transform is overcomplete by the factor 4k/3.

Each of the blocks in Figure 1 represents a two-dimensional
transfer function. H0(u,v) is a highpass filter that passes the high
frequency information that falls in the “corners” of the (square)
frequency space through Node 1. Lo(u,v) is a complementary
lowpass filter, where u and v are frequency variables
corresponding to the x- and y-directions, respectively. The
asterisks in Fig. 1 indicate 180° rotation of the transfer function.
Nodes 2 and 3 pass the high frequency (edge) information at the
first scale. Node 4 passes the low-frequency information, and this
is where additional stages of decomposition and reconstruction
can be inserted.

Figure 2. Two-stage steerable pyramid transform for
k=2.

In Figure 2, the output of the (single) highpass filter fills the LR
quadrant. The two bandpass filter outputs of the first stage appear
in the UR and LL quadrants, while the decimated lowpass output
falls at the LR corner of the UL quadrant. The three output
images of the second stage follow the same format in the UL
quadrant.

This paper is organized as follows. In Section 2 we discuss the
mathematical requirements imposed by invertibility and describe
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a frequency-domain method for designing the required transfer
functions. In Section 3 we illustrate the process with an example.
Finally we discuss the technique and its application.

2. FILTER DESIGN

2.1 Invertibility Requirements

The constraints the filters must satisfy [1], illustrated for the k =
2 case, are (1) flat system response,
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and (3) no aliasing upon subsampling,

L1(u,v) = 0    for    s > fN/2                      (3)

where  fN = 1/2∆x is the folding frequency, and s u v= +2 2

is the radial variable in frequency space.

A sufficient condition for Eq. (2) to hold is that the
decomposition/reconstruction filter bank has unity gain,
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From this Eq. (1) implies that the pre- and post-processing steps
must also have unity gain, that is,

| ( , )| | ( , )|H u v L u v
0

2

0

2 1+ =                     (5)

This defines a special case for which it is simple to
construct suitable transfer functions.

2.2 The Lowpass Filters

We define a general, smooth-edged, one-dimensional
lowpass transfer function using the raised cosine,
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where a and b are parameters that establish the band limits. The
transfer function of the two-dimensional lowpass filter used in
the preprocessing stage is given by

L u v LP f f s
N0 2

, , ,( ) = 0 5                       (7)

the lowpass filter used in the iterated stages is

L u v LP f f s
N1 1

2, , ,( ) = 0 5                     (8)

and f1 and f2 are design parameters. These transfer functions are
shown in Figures 3 and 4.

2.3 The Highpass Filter

We define a smooth-edged one-dimensional highpass transfer
function, again using the raised cosine,

HP a b f
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Then the two-dimensional highpass filter transfer function is
given by

H u v HP f f sN0 2, , ,( ) = 0 5                     (10)

This transfer function is shown in Figure 3.

2.4 The Steerable Bandpass Filters

The k directional bandpass filters used in the iterated stages are
given by

B u v HP f f s m k
m N

k, , , cos( ) −= −
1

2 10 5 1 6θ π       (11)

where m = 0,...,k-1, and

θ = −tan 1 v u0 5                               (12)

is the angular variable in frequency space.

3. DESIGN EXAMPLE: k = 2
The k=2 case, illustrated in Figure 1, requires two bandpass
filters, and these approximate first derivatives in the x- and y-
directions. Their transfer functions are shown in Figure 4. In this
example, the parameters f1 and f2 were chosen as 0 and 5/8 fN,
respectively.

The sum of squared magnitudes of the two bandpass filters forms
a circularly symmetric highpass filter. The lowpass filter, L1(u,v),
passes the low frequency components that fall in the central core
of that filter. Finally, the highpass filter, H0(u,v), passes the high
frequency information that falls in the “corners” of the
(rectangular) frequency plane. Thus all energy, regardless of
frequency, is passed to the output with unity gain.
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The output of the L1(-u,-v) decomposition filter is downsampled
by a factor of two, but this is aliasing-free since all energy of
frequency high enough to be aliased has been removed by L1(-u,-
v). Upon reconstruction, the down- and up-sampled signal in
branch 4 (in which every second sample is zero) is interpolated
by L1(u,v).
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Figure 3. The transfer functions of the pre- and post-
processing filters used in Figure 1.
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Figure 4. The transfer functions of the iterated filters
used in Figure 1.
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4. IMPLEMENTATION

The filter bank decomposition can be implemented in either the
spatial or frequency domain. Normally the decomposition filters
would be designed in the frequency domain, since the conceptual
process is one of segmenting that domain with a set of transfer
functions that sum to unity. Convolution kernels can be obtained
by inverse Fourier transformation, provided that round-off and
kernel truncation errors are kept under control [6].

With a large number of filters in the bank (i.e., large k), one
might do well to implement the design process (i.e.,
determination of f1 and f2) in the frequency domain. A test image
could be transformed, and the N component images inverse
transformed initially to guide the design process. The output
image would then have to be inverse transformed each time a
new design was specified. The final design could be implemented
with convolutions.

5. SUMMARY

The filter design technique presented here can produce
implementations for steerable pyramid transforms of any degree.
These can be used, for example, in image enhancement
applications [7]. They are accurately invertible (perfect
reconstruction filter banks), and the required filtering can be
implemented in either the spatial or frequency domain. For
spatial domain implementations the convolution kernels can be
truncated to reasonable size without introducing serious
approximation error.

Images formed by optical means are subject to the OTF of the
image-forming lens. For microscopes this is, at best, a circular
transfer function that is band-limited at fc = 2NA/λ. Thus, if the
image is not undersampled (i.e., if  fN = 1/2∆x > fc), there will be
no information outside the circle of radius fN in the frequency
plane, and the pre- and post-processing steps can perhaps be
eliminated.

Implemented with the WiT software package [8,9], the transform
executes with reasonable speed on a Pentium processor. This
provides a convenient testbed for the development of image
processing applications using the steerable pyramid transform.
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